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Successive approximations can be used not only to study qualitative questions such as 
the existence of solutions but also to determine the quantitative characteristics of these 
solutions. Individual papers (see [i]) are known in which this approach was applied to com- 
bustion problems but it received no substantial development in combustion theory. This is 
apparently explained by the fact that a successful realization of the method (there can be 
several) and the initial approximation has not always been selected successfully. Succes- 
sive approximations are utilized in this paper to determine the combustion wave velocity in 
a condensed medium. Convergent approximations are constructed that decrease monotonically 
to the desired solution as are monotonically increasing approximations. Therefore, upper 
and lower bounds of the velocity are obtained, where the successful selection of the initial 
approximation yields agreement between the asymptotics of these bounds for the first approx- 
imations, which permits finding the velocity asymptotic in the higher terms. 

i. FORMULATION OF THE PROBLEM 

The system of differential equations describing n-th order reaction front propagation 
in a condensed medium has the form 

0"  --  uO' + (l/7)anO(O) = O, ua' + (l/?)a~O(O) = O. ( 1 . 1 )  

Here O is the dimensionless temperature, a is the initial substance concentration, u is the 
wave velocity; the prime denotes differentiation with respect to the space variable x 

�9 ( 0 ) =  / O' 0 ( - -  I ~.~ 0 < --  I -f- h), ( 1 . 2 )  
(exp__,  (--~+h<O<O); 

and u are traditional small parameters for combustion problems, ~ = RT,/E; ~ = ET,2/qE; 
T, is the combustion temperature; T, = T i + q, T i is the initial mixture temperature, q is 
adiabatic heating of the reaction, E is the activation energy of the reaction, R is the gas 
constant, and h is the magnitude of the source pieces. The boundary conditions as x § • 
are: O(-~) = -i, a (-~) = i, 8(+~) = a~(+~) = 0. 

The asymptotic of the combustion wave velocity was considered for the model mentioned 
in [2-5]. At the present time it can be considered that the question of the determination of the two 
highest terms of a nonuniform asymptotic is solved for n < 2. We understand the nonunifor- 
mity of the asymptotic in the following sense: The limit of the asymptotic in the infini- 
tesimal ~ equals zero as n + 2 and does not agree with the asymptotic in ~ obtained for n = 
2. Such a situation is characteristic for the case of successive application of the method 
of merging of asymptotic expansions in powers of y. Successive approximations permits con- 
struction of a uniform asymptotic for n ~ 2. 

2. REALIZATION OF SUCCESSIVE APPROXIMATIONS 
FOR 0 ~ n <_ i 

The system of equations (i.i) has a first integral and can be reduced in the ordinary 

way to one equation 

8 
da I anexp 7+60 (2.1) 
d-#-- %,u s a(O)+O 
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With the boundary conditions 

a ( - - i - I - h )  = t ,  a(O) ---- 0 

(0 is a new independent variable, -i + h ~ 0 ~ 0,ia (0) is an unknown function). 
to obtain from (2.1) and (2.2) 

0 

a ~-"(0)=1 2--n f exp?+~ 
?u 2 i + xla dx; 

- - l + h  

( 2 . 2 )  

It is easy 

( 2 . 3 )  

Let us set 

0 

U2~_ 2 - n  ~ exp?+[3"~dx" (2 .4 )  
? i + *la 

--l+h 

0 

2-n 2--n  f exp ?+~T 
a~+~ (0)  = t - -  - -  ?u 2 j i + ~la i (z) d~,  a o (0) ~ i .  ( 2 . 5 )  

- - l + h  

Since a0(0)~a(0) for -i + h ~ O ~ 0, then a(0)~(0)~a0(O ) for -i + h ~ 9 ~ 0 by virtue of 
(2.3) and (2.5). Hence, by induction 

a(O) < ai+l(O) ~-~ ai(O) (--i ~- h ~ 0 <-~ 0). (2.6) 

Let~(8) denote the limit of the sequence of functions {ai(8) }. Passing to the limit in 
(2.5) [it is possible to pass to the limit under the integral sign by the Lebesgue theorem 
because of the inequality (2.6)], we find thati~ satisfies (2.3) and, therefore, (2.1). It 
is also clear that if u is the wave velocity then a(--i q-h) = i, a(0) = 0. 

Therefore, a decreasing sequence of functions has been obtained that converges to the 
solution and a corresponding sequence of inequalities for the velocity is 

O Z 

u2>F~(u~)==-2--n  5 exP?+~d~ (i=0,  i, 2, .), ( 2 . 7 )  
? t + ~la~ (~) �9 �9 

-- l+h 

whose right sides are functions of u 2. It is seen that F i decrease monotonically in u 2 and 
Fi+ I > F i. If ui 2 denotes the solution of the equation 

u2 = F i ( u 2 ) '  ( 2 . 8 )  

t h e n  a i+ l (O)  = 0 f o r  t he  f u n c t i o n s  ( 2 . 5 ) ,  where u i i s  s u b s t i t u t e d  in  p l a c e  of  u.  Consequent -  
l y ,  Fi+1(u 2) is defined for u 2 > ui 2. Therefore, the solution of (2.8) exists, is unique, 
and the sequence of numbers {ui} converges to the value of the velocity by growing. 

Let us note that the successive approximations (2.5) are determined and converge to the 
solution for any values of n e O; however, the expression for the velocity (2.4) and the in- 
equality (2.7) hold only for n < 2. 

Let us consider the function ai(8) in addition to the functions ~i(0): 

0 

a~-n(O) 2--n~xP---7+~-I-~d~ ( i =  O, 1, 2, .). ( 2 .9 )  
= ?u - - F -  O i + ~/a~ (T) " " 

0 

From the representation of the solution 

0 T 2--rift a2--n ( o) ._~_ (2.10) 

and the inequalities (2.6) 

=,(0) ~ ~.Jo)~<a(O),  ~ = O. t, 2 . . . .  ( - I  + h  < O ~< 0). (2 .11)  

The existence of the integral in (2.9) follows from the fact that the integral in (2.10) is 
defined, and from the inequalities (2.6). 
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Using the representation (2.4) for the velocity and the inequalities (2.11), we obtain 

0 T 

u: ~ <  ~2--n y exp %,+~'~ d. ~ : 1  +~/=i(.0 ( i = 0 ,  t ,  2 . . . .  �9 ). ( 2 . 1 2 )  
- - l + h  

The existence of the integral in (2.12) for all i evidently results from the existence of 
the integral for i = 0. For this it is sufficient to require that the following conditions 

be satisfied 

and 

=o(0) > --0 (0 > 0 > / - - i  Jr h) ( 2 . 1 3 )  

lim(--Olao(O))<1. e~o (2.14) 

For n > 1 (2.13) is spoiled near zero. In the case n ~ 1 that is examined in this section, 
it follows from the inequality a02-n(8) > -8, i.e., 

0 

j ~%-~ d ,> - -O  (--i+h~<O<O). 
0 

I t  i s  e a s y  t o  c o n f i r m  t h a t  Jo" (O)  <PO f o r  7 < h.  S i n c e  Jo(O) = 0 and J o ( - 1  + h)  + 1 as 7 § 
0 (u  2 + 2 - n as  y + 0 [ 6 ] ) ,  t h e n  ( 2 . 1 3 )  i s  s a t i s f i e d  f o r  s u f f i c i e n t l y  s m a l l  ~. The v a l u e  
of the limit in (2.4) equals zero for n < 1 and ~u 2 for n = i. 

Let r 2) denote the right side in (2.12). It is seen that the functions ai+ I and 
ai agree for u = ui, consequently, r 2) = Fi+x(ui2). Furthermore, the functions r 2) 
are growing and r < r -in the domain of definition. If ui 2 denotes the solution of the 

equation 

u ~ = m,(~)  ( 2 . 1 5 )  

(more exactly, the least of the solutions), then we find a decreasing sequence of numbers 
ui 2 that converges to the square of the velocity. The solvability of (2.15) for i > 0 fol- 
lows from the solvability for i = 0 which holds for sufficiently small 7 as will be seen 

later. 

3. ASYMPTOTIC OF THE VELOCITY FOR 0 ~ n <- I 

It is shown above that the inequality 

Fi(uD < tt ~ < mo(uD 

is satisfied. In this section two of the highest terms of the asymptotic expansion of the 
functions F I and ~0 as 7 + 0 are presented. Since these expansions agree, the asymptotic 
of the velocity can be obtained. Let us note that a larger number of terms of the expan- 
sion will agree for the functions F i and #i-I (i > i), which yields the next terms of the 
velocity asymptotic. The estimate (2.7) for i = 0 agrees with the estimate obtained by the 
minimax method [6] while the function a i(8) agrees with the main trial function used there. 

Let us represent the function F I in the form F l = FII + FI 2, where 
0 

F~ = (2 -- n) exp ~ dO; 
(--l+h)l? 

O 
--Oexp 1--%-~ dO 

El2 ----- (2 - -  n)?  (--l+h)/v ~0 + Vt _ 2 u ~- n. i expt +t +7 ~" - ']l/<2--n)'l~ ~_1" | 

-- (--l+h)/v -- 

Let us make the change of variables x = ~-I(i + ~O) - i  under the integral sign in the expres- 
sion for Fix and let us use the asymptotic representation of the incomplete Gamma function 
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o 1/~ ; + 
x=ll~ 

(--l+h)h, 

Let 112 denote the integral in the expression F12. If we pass to the limit formally there- 
in as ~ ~ 0, then 

0 

lira f12 = ~ - -  0 exp 0 dO, ( 3  1 )  
~ o  (t - -  exp O) 1/(2-n) 

and the asymptotic representation for the function F I has the form 

[ F 1 = ( 2 - n )  1 - - 2 ~ - - 7  
7 

.O. ex___pO d0 | 
( i  - exp 0 ) iX  * - ' )  § o (?) j .  

To give a foundation to the passage to the limit (3.1), the integral 112 must be separated 
into two integrals with the limits from (-i + h)/~ to -N and from -N to 0. For sufficiently 
large N and small 7 the former of them is a small quantity while the passage to the limit 

+ 0 can be made in the second integral with constant limits by the Lebesgue theorem. 

Analogously, we find the asymptotic representation of the function ~0(u2). Let us note 
that if the convergence u 2 § 2 - n as ~ + 0, is not used, then for fixed u 2 

/ u2 ~1/(2-n) --- 0 e_xp 0 d___~O 
@o (u2) = (2 - -  n) I - -  2~ + ? ~ y z - ~ j  - ~  (t - -  exp 0) 1/(~-n) -5  o (?) . 

In particular, there hence follows the solvability of (2.15) for small ~, i = 0. Therefore, 
for 0 ~ n _< 1 the two highest terms of the upper and lower bound asymptotics agree, there- 
fore, the velocity asymptotic has the form 

x exp (-- x) dx 
u S = (2 - -  n)  i - -  2~ -5  ? t - -  ex--p (---~)-]1/(--2-=) -5  o (?) . ( 3 . 2  ) 

The c o e f f i c i e n t  o f  y c a n  a l s o  be  r e p r e s e n t e d  a s  

i xexp( - -x )  dx 2 - - n [  3 - - 2 n  
[i - -  exp (-- x)] 1/(~-n) n----t 

0 

w h e r e  ~ ( z )  = r ' ( z ) / r ( z ) ;  r ( z )  i s  t h e  Gamma f u n c t i o n  and  ~ ( z )  i s  t h e  d i a g r a m  f u n c t i o n .  

For 0 ~ n <- 1 the velocity asymptotic (3.2) agrees with the asymptotic obtained in [2~ 
4] by merging the asymptotic expansions. 

4. SUCCESSIVE APPROXIMATIONS FOR 1 ~ n ~ 2 

The initial approximation examined in Sec. 3 does not permit obtaining the asymptotic 
of the upper bound for n > i. Consequently, we give another initial approximation. Let us 
consider the equation 

db t b n 
-- ?~b+0" (4.1) 

Equating (2.1) and (4.1), we see that if b(O) =a (O) then db/dO < da/dO, i.e., the trajec- 
tories of (4.1) intersect the trajectories of (2.1) from the top down. Consequently, the 
solution of (4.1) with the boundary conditions b(0) = 0 becomes equal to one for a certain 
0 = O 0. We take the function b0(8 ) that agrees with the mentioned solution when it is less 
than one and equal to one for -i + h ~ O ~ O 0 as the initial approximation. Therefore 

a(O)~.~bo(O )-~<1 ( - - t  + h < O < ~ O )  (4.2) 
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[ ~ ( e )  is a solution of the problem (2.1) and (2.2)]. As before, we give the subsequent ap- 
proximations in the form 

8 T 

b ~-'~ tm 2r-- n f texp+ ?--+('0 ~ d~, i = O, t, 2, i+~ t " j  = I ,,u~ ,c/b i . . .  
--1+h 

It follows from (4.2) that a(0) ~ bi(0) < ai(0), i = 0, I, 2 . . . .  ( - - I  -~- h ~ 0 < 0), and hence the 
convergence of the successive approximations bi(8) to the solution a (8) and the inequality 

0 
2--n [ exp V+~z3_ 

/$2 
V ~ i - g - - 7 ~ N ~ ,  ~ = o , i ,  2 . . . .  

--a+h 

In order to obtain the upper bound of the velocity, one more sequence of functions 
bounding the solution from below 

must be given. If 

then 

7u 2 .! t + "~/b i ('C) 
0 

i = 0 , 1 , 2  . . . .  

i~(o) > - o  ( - 1  + h < 0 < 0), ( 4 . 3 )  

o I; 

u ~ <  2 - - n  f exp ?._FI3T, 
%, {-~ ~-7-~ (~ aT, i = 0 ,  1 ,2  . . . . .  (4.4) 

--l+h 

Let us note that finiteness of the integral in (4.4) will does not result from (4.3). Since 
the inequality (4.4) will be used later for i = 0, it must be confirmed that it is satisfied 
in this case. 

For 8 g 80, b0(0) ~ 1 and the inequality (4.3) is proved exactly as is (2.13). The 
function 80 satisfies the equation 

0 
d~o 1 ~ -%0  exp ? + ~0 
dO -- ?u 2 b 0 + 0  ( 4 . 5 )  

with the boundary condition B0(0) = 0. Consequently, the validity of (4.3) for 8 o ~ 8 < 0 
follows from the inequality 

0 
i ( - -  O) n - 1  b o exp ? + 80 

Vu 2 b o + O "  <-- i, ( 4 . 6 )  

which means that the trajectories of Eqs. (4.5) intersect the line 80 = -8 from the top down. 
Introducing the notation 

e = ( ? a m ) m / ? ,  ~ m ( z )  = z l - m E m ~ )  exp z, 
'm = i/ (n -- i ), z = ?om [bo(8) ] -I/m (4.7) 

(E m is the exponential integral function), we find 8/b0(8) = -zEm(z) exp z by solving (4.1) 
and we represent (4.6) as 

( ,] i/m - 8 , , ~  (~) m[$m z) expi--~s--i-~(z) >/i--zE,,,(z)expz (z~'~am). (4.8) 

The validity of (4.8) is confirmed by simple calculations in which the inequalities i/(z + 
m) ~ Em(z) expz (z e 0, m > i) and ~m(Z) ~ -80/~e (z > yom), resulting from the properties 
of these special functions must be taken into account. 

5. VELOCITY ASYMPTOTIC FOR i < n ~ 2 

As in Sec. 3, we obtain the asymptotic representations of the upper and lower bounds. 
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Let J denote the right side in the estimate (4.4) for i = 0 and after simple identity 

transformations using the notation (4.7), we write 

where 

J=,z_n,[ i oxp  o+Jl§ ] 
(--1 h>i? 

y 2 - - n  ' 
_ 70 exp t ~  d~ -- J i  -- ? 0 exp l j -  

(--i-l-h)/",' I_ \ 0  

J~ = - -  e ~ exp T + (m - -  exp ~ d~ i + 

Oo/'VS l_ "'~ 

- ~,~ ('-) 
dz d'~. 

Zo(X) 

(5.1) 

(5 .2)  

Therefore, the question of determining the asymptotic of the upper bound reduces to deter- 
min ing  t h e  a s y m p t o t i c s  o f  t h e  i n t e g r a l s  J i  and J2 .  I t  i s  s i m p l e  t o  show t h a t  

--1 

f OexpO ( 5 . 3 )  
J1 = - -  ? (i  - -  exp O) 1 / (~n)  dO + o (?); 

0 

f 0 exp 0 
12------7 (i_expO)l/(2_n) d O + o ( ? )  ( 1 < n < 3 / 2 ) ;  ( 5 . 4 )  

--1 

P 
J 2  ---~ - -  E ] 

T dT [ ~ lm/(m_l) -~-o(e)= (5.5) 
-co ~ + (m - -  l ) m l ( ~ - n  - -  x + % ,  (z) dz 

Zo(X) J 

- - -~  ~ , ~ ( z ) d z + o ( 8 ) = ~  ~ - - T  J r o ( ~ )  < n < 2 .  
0 

I t  i s  t a k e n  i n t o  a c c o u n t  in  ( 5 . 3 )  and ( 5 . 4 )  t h a t  u 2 ~ 2 - n as  ~ -~ 0, which  does  n o t  
a f f e c t  t h e  form o f  t h e  h i g h e s t  t e r m s .  I t  i s  g e n e r a l l y  i m p o s s i b l e  t o  make such  a r e p l a c e -  
ment in  ( 5 . 5 )  s i n c e  p r e c i s e l y  i t  r e s u l t s  in  n o n u n i f o r m i t y  o f  t h e  a s y m p t o t i c .  I f ,  however ,  
we have  a n o n u n i f o r m  a s y m p t o t i c  in  mind,  t h e n  by v i r t u e  o f  ( 5 . 3 ) - ( 5 . 5 )  i t  i s  w r i t t e n  f o r  t h e  
uppe r  bound as  

[ i ]( x exp ( - -  z) d~ 
u ~" = (2 - -  n) t - -  26 + ? (i  - -  exp ( - -  z)) 1/(2-~) + o (?) 1 < n < ; ( 5 . 6  ) 

0 

- -  _ ~ - l r / 2 n - 3  ~ u s = (2 -- n) t j r  ?n-i ~ ~ ]  q- o ?h-~ < n < 2  ( 5 . 7 )  

For  n = 3 /2  t h e  e x p r e s s i o n s  ( 5 . 6 )  and ( 5 . 7 )  c a n n o t  be u s e d  s i n c e  t h e  m a g n i t u d e  o f  t h e  d i s -  
carded terms depends on n and grows as n § 3/2. The asymptotic of the integrals (5.1) and 
(5.2) for n = 3/2 yields 

u 2 = (1/2)(1 - -  ? in ? Jr 0(?)) (n = 3/2). ( 5 . 8 )  

The a s y m p t o t i c  o f  t h e  lower  bound i s  o b t a i n e d  a n a l o g o u s l y  and a g r e e s  w i t h  ( 5 . 5 ) - ( 5 . 8 ) .  
T h e r e f o r e ,  t h e  n o n u n i f o r m  v e l o c i t y  a s y m p t o t i c  f o r  1 < n < 2 has  t h e  form ( 5 . 5 ) - ( 5 . 8 )  and 
a g r e e s  w i t h  t h a t  o b t a i n e d  in  [2 ,  5 ] .  
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By limiting ourselves to the highest term in the expansions of the integrals J1 and J2 
in powers of y, it is impossible to obtain a general representation for the velocity asymp- 
totic for i < n < 2, as is seen from therexpressions presented above. The mentioned general 
representation for the upper bound of the velocity will be 

_ %~_~(?(m --1)) 8 0 
u ~ = ( 2 - - n )  i - - 2 p - -  (n - -2 ) (m- - l )  + ( z - - 2 ) ( m - - t )  1/(m-1) + 

(5.9) 

(m -- I) m/(m-l) ~"------1 r (r -- l/(m -- I)) ~ 0 

where E0 = Ym-l(m - i) TM. Let us note that the asymptotic (5.9) is determined to the accu- 
racy of quadratic terms, which results in the appearance of additional terms of the expan- 
sion as compared with (5.6)-(5.8). It cannot be simplified substantially for all n, i < 
n~2. 

An analogous representation can be written also for the lower bound asymptotic; however 
only the two highest terms of the expansion agree for them. 

In conclusion, let us examine the question of a uniform velocity asymptotic as n + 2. 
As already mentioned, successive approximation affords the possibility of obtaining veloc- 
ity upper and lower bounds in terms of functions that are, in turn, dependent on the veloc- 
ity. The agreement between the two highest terms of the asymptotics of these functions re- 
sults in an asymptotic equality for the velocity (3/2 < n < 2) 

~] 2 

u 2 (2 n) l + ~'u~.~[2"--31tn_lS'~"rtn_, / = - (5. 10) 

Analysis of the integrals J1 and J2 shows that the discarded terms remain bounded as n + 2, 
which permits passage to the limit. Consequently, u = In (i/yu 2) ~ i for n = 2 for which u 2 ~ 
1/in(l/y), which agrees with the highest term of the asymptotic in [2]. Neglecting the 
smallest terms in (5.10), we obtain 

u2 ~ 2 - - n  
2 - - n  

Solving this transcendental equation for u 2 by successive approximations, we find 

U ~ ,  2 - - n  
2 - - n  

2-__n/2 - -  nkn---'-I [2n - -  3\ t 

which yields a uniform asymptotic as n @ 2 and the two highest terms of the nonuniform 
asymptotic for 3/2 < n < 2. 

(5.11) 
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